Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cells ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36497055

RESUMO

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Assuntos
Quebras de DNA de Cadeia Dupla , Radiação Ionizante , Pontos de Checagem da Fase G2 do Ciclo Celular , Espécies Reativas de Oxigênio , Transdução de Sinais
2.
DNA Repair (Amst) ; 113: 103305, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255311

RESUMO

BACKGROUND: Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we performed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.5 h and 4 h after exposure to LD (0.1 Gy) and high doses (HD; 1 Gy) of IR. RESULTS: The proteome remained relatively stable (29; 0.5% proteins responded), whereas the phosphoproteome changed dynamically (819; 7% phosphosites changed) upon irradiation. Dose-dependent alterations of 25 IR-responsive proteins were identified, with only four in common between LD and HD. Mitochondrial metabolic proteins and pathways responded to LD, whereas transporter proteins and mitochondrial uncoupling pathways responded to HD. Congruently, mitochondrial respiration increased after LD exposure but decreased after HD exposure. While the bulk of the phosphoproteome response to LD (76%) occurred already at 0.5 h, an equivalent proportion of the phosphosites responded to HD at both time points. Motif, kinome/phosphatome, kinase-substrate, and pathway analyses revealed a robust DNA damage response (DDR) activation after HD exposure but not after LD exposure. Instead, LD-irradiation induced (de)phosphorylation of kinases, kinase-substrates and phosphatases that predominantly respond to reactive oxygen species (ROS) production. CONCLUSION: Our analyses identify discrete global proteome and phosphoproteome responses after LD and HD, uncovering novel proteins and protein (de)phosphorylation events involved in the dose-dependent ionizing radiation responses.

3.
Arch Toxicol ; 94(5): 1655-1671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189037

RESUMO

Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.


Assuntos
Proteoma/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Diferenciação Celular , Cisplatino/toxicidade , Quebras de DNA de Cadeia Dupla , Etoposídeo/toxicidade , Humanos , Camundongos , Estresse Oxidativo , Fosforilação , Transdução de Sinais , Inibidores da Topoisomerase II
4.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722399

RESUMO

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Raios Ultravioleta
5.
Photochem Photobiol Sci ; 17(12): 1842-1852, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30065996

RESUMO

Solar ultraviolet (UV) radiation generates bulky photodimers at di-pyrimidine sites that pose stress to cells and organisms by hindering DNA replication and transcription. In addition, solar UV also induces various types of oxidative DNA lesions and single strand DNA breaks. Relieving toxicity and maintenance of genomic integrity are of clinical importance in relation to erythema/edema and diseases such as cancer, neurodegeneration and premature ageing, respectively. Following solar UV radiation, a network of DNA damage response mechanisms triggers a signal transduction cascade to regulate various genome-protection pathways including DNA damage repair, cell cycle control, apoptosis, transcription and chromatin remodeling. The effects of UVC and UVB radiation on cellular DNA are predominantly accounted for by the formation of photodimers at di-pyrimidine sites. These photodimers are mutagenic: UVC, UVB and also UVA radiation induce a broadly similar pattern of transition mutations at di-pyrimidine sites. The mutagenic potency of solar UV is counteracted by efficient repair of photodimers involving global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER); the latter is a specialized repair pathway to remove transcription-blocking photodimers and restore UV-inhibited transcription. On the molecular level these processes are facilitated and regulated by various post-translational modifications of NER factors and the chromatin substrate. Inherited defects in NER are manifested in different diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), UV sensitive syndrome (UVsS) and the photosensitive form of trichothiodystrophy (TTD). XP patients are prone to sunlight-induced skin cancer. UVB irradiated XP and CS knockout mouse models unveiled that only TC-NER counteracts erythema/edema, whereas both GG-NER and TC-NER protect against UVB-induced cancer. Additionally, UVA radiation induces mutations characterized by oxidation-linked signature at non-di-pyrimidine sites. The biological relevance of oxidation damage is demonstrated by the cancer susceptibility of UVB-irradiated mice deficient in repair of oxidation damage, i.e., 8-oxoguanine.


Assuntos
Dano ao DNA/efeitos da radiação , Raios Ultravioleta , Animais , Reparo do DNA , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética
6.
Nat Commun ; 9(1): 1040, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531219

RESUMO

Transcription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRLCSA). Despite its vital role in TC-NER, little is known about the regulation of the CRLCSA complex during TC-NER. Using conventional and cross-linking immunoprecipitations coupled to mass spectrometry, we uncover a stable interaction between CSA and the TRiC chaperonin. TRiC's binding to CSA ensures its stability and DDB1-dependent assembly into the CRLCSA complex. Consequently, loss of TRiC leads to mislocalization and depletion of CSA, as well as impaired transcription recovery following UV damage, suggesting defects in TC-NER. Furthermore, Cockayne syndrome (CS)-causing mutations in CSA lead to increased TRiC binding and a failure to compose the CRLCSA complex. Thus, we uncover CSA as a TRiC substrate and reveal that TRiC regulates CSA-dependent TC-NER and the development of CS.


Assuntos
Chaperonina com TCP-1/metabolismo , Dano ao DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Chaperonina com TCP-1/genética , Síndrome de Cockayne/genética , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Humanos , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Mutação/genética , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação
7.
Elife ; 62017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240985

RESUMO

DNA double-strand breaks (DSB) elicit a ubiquitylation cascade that controls DNA repair pathway choice. This cascade involves the ubiquitylation of histone H2A by the RNF168 ligase and the subsequent recruitment of RIF1, which suppresses homologous recombination (HR) in G1 cells. The RIF1-dependent suppression is relieved in S/G2 cells, allowing PALB2-driven HR to occur. With the inhibitory impact of RIF1 relieved, it remains unclear how RNF168-induced ubiquitylation influences HR. Here, we uncover that RNF168 links the HR machinery to H2A ubiquitylation in S/G2 cells. We show that PALB2 indirectly recognizes histone ubiquitylation by physically associating with ubiquitin-bound RNF168. This direct interaction is mediated by the newly identified PALB2-interacting domain (PID) in RNF168 and the WD40 domain in PALB2, and drives DNA repair by facilitating the assembly of PALB2-containing HR complexes at DSBs. Our findings demonstrate that RNF168 couples PALB2-dependent HR to H2A ubiquitylation to promote DNA repair and preserve genome integrity.


Assuntos
DNA/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Histonas/metabolismo , Reparo de DNA por Recombinação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Células HEK293 , Histonas/genética , Humanos , Lasers de Excimer , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos da radiação , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Raios X
8.
Free Radic Biol Med ; 99: 385-391, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27585947

RESUMO

Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.


Assuntos
Síndrome de Cockayne/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Estresse Oxidativo , Xeroderma Pigmentoso/urina , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/urina , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Nucleotídeos de Desoxiguanina/metabolismo , Desoxiguanosina/urina , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
9.
Nucleic Acids Res ; 43(14): 6919-33, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26101254

RESUMO

The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Endopeptidases/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Reparo de DNA por Recombinação , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Chaperonas de Histonas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Mol Cell Biol ; 35(7): 1254-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624349

RESUMO

DNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status. Expression of wild-type but not ubiquitinase-defective ARIH1 constructs prevented sensitization caused by ARIH1 knockdown. ARIH1 protein abundance increased after DNA damage through attenuation of proteasomal degradation that required ATM signaling. Accumulated ARIH1 associated with 4EHP, and in turn, this competitive inhibitor of the eukaryotic translation initiation factor 4E (eIF4E) underwent increased nondegradative ubiquitination upon DNA damage. Genotoxic stress led to an enrichment of ARIH1 in perinuclear, ribosome-containing regions and triggered 4EHP association with the mRNA 5' cap as well as mRNA translation arrest in an ARIH1-dependent manner. Finally, restoration of DNA damage-induced translation arrest in ARIH1-depleted cells by means of an eIF2 inhibitor was sufficient to reinstate resistance to genotoxic stress. These findings identify ARIH1 as a potent mediator of DNA damage-induced translation arrest that protects stem and cancer cells against genotoxic stress.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/genética , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Biossíntese de Proteínas , Interferência de RNA , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Exp Cell Res ; 329(1): 116-23, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128816

RESUMO

Nucleotide excision repair (NER) is a key component of the DNA damage response (DDR) and it is essential to safeguard genome integrity against genotoxic insults. The regulation of NER is primarily mediated by protein post-translational modifications (PTMs). The NER machinery removes a wide spectrum of DNA helix distorting lesions, including those induced by solar radiation, through two sub-pathways: global genome nucleotide excision repair (GG-NER) and transcription coupled nucleotide excision repair (TC-NER). Severe clinical consequences associated with inherited NER defects, including premature ageing, neurodegeneration and extreme cancer-susceptibility, underscore the biological relevance of NER. In the last two decades most of the core NER machinery has been elaborately described, shifting attention to molecular mechanisms that either facilitate NER in the context of chromatin or promote the timely and accurate interplay between NER factors and various post-translational modifications. In this review, we summarize and discuss the latest findings in NER. In particular, we focus on emerging factors and novel molecular mechanisms by which NER is regulated.


Assuntos
Reparo do DNA/genética , Processamento de Proteína Pós-Traducional , Transcrição Gênica/genética , Animais , Humanos
12.
Mutat Res ; 751-752: 8-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24144844

RESUMO

Ultraviolet radiation is a highly mutagenic agent that damages the DNA by the formation of mutagenic photoproducts at dipyrimidine sites and by oxidative DNA damages via reactive oxygen species (ROS). ROS can also give rise to mutations via oxidation of dNTPs in the nucleotide pool, e.g. 8-oxo-dGTP and 2-OH-dATP and subsequent incorporation during DNA replication. Here we show that expression of human MutT homolog 1 (hMTH1) which sanitizes the nucleotide pool by dephosphorylating oxidized dNTPs, protects against mutagenesis induced by long wave UVA light and by UVB light but not by short wave UVC light. Mutational spectra analyses of UVA-induced mutations at the endogenous Thymidine kinase gene in human lymphoblastoid cells revealed that hMTH1 mainly protects cells from transitions at GC and AT base pairs.


Assuntos
Enzimas Reparadoras do DNA/genética , Mutação/efeitos da radiação , Monoéster Fosfórico Hidrolases/genética , Raios Ultravioleta , Pareamento de Bases/efeitos da radiação , Linhagem Celular , Enzimas Reparadoras do DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mutagênese/efeitos da radiação , Taxa de Mutação , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Timidina Quinase/genética
13.
BMC Cancer ; 13: 58, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23379751

RESUMO

BACKGROUND: The risk of developing cutaneous squamous cell carcinoma (SCC) is markedly increased in organ transplant recipients (OTRs) compared to the normal population. Next to sun exposure, the immunosuppressive regimen is an important risk factor for the development of SCC in OTRs. Various gene mutations (e.g. TP53) and genetic alterations (e.g. loss of CDKN2A, amplification of RAS) have been found in SCCs. The aim of this genome-wide study was to identify pathways and genomic alterations that are consistently involved in the formation of SCCs and their precursor lesions, actinic keratoses (AKs). METHODS: To perform the analysis in an isogenic background, RNA and DNA were isolated from SCC, AK and normal (unexposed) epidermis (NS) from each of 13 OTRs. Samples were subjected to genome-wide expression analysis and genome SNP analysis using Illumina's HumanWG-6 BeadChips and Infinium II HumanHap550 Genotyping BeadChips, respectively. mRNA expression results were verified by quantitative PCR. RESULTS: Hierarchical cluster analysis of mRNA expression profiles showed SCC, AK and NS samples to separate into three distinct groups. Several thousand genes were differentially expressed between epidermis, AK and SCC; most upregulated in SCCs were hyperproliferation related genes and stress markers, such as keratin 6 (KRT6), KRT16 and KRT17. Matching to oncogenic pathways revealed activation of downstream targets of RAS and cMYC in SCCs and of NFκB and TNF already in AKs. In contrast to what has been reported previously, genome-wide SNP analysis showed very few copy number variations in AKs and SCCs, and these variations had no apparent relationship with observed changes in mRNA expression profiles. CONCLUSION: Vast differences in gene expression profiles exist between SCC, AK and NS from immunosuppressed OTRs. Moreover, several pathways activated in SCCs were already activated in AKs, confirming the assumption that AKs are the precursor lesions of SCCs. Since the drastic changes in gene expression appeared unlinked to specific genomic gains or losses, the causal events driving SCC development require further investigation. Other molecular mechanisms, such as DNA methylation or miRNA alterations, may affect gene expression in SCCs of OTRs. Further study is required to identify the mechanisms of early activation of NFκB and TNF, and to establish whether these pathways offer a feasible target for preventive intervention among OTRs.


Assuntos
Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Ceratose Actínica/genética , Transplante de Órgãos/efeitos adversos , Neoplasias Cutâneas/genética , Idoso , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/imunologia , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Imunossupressores/efeitos adversos , Ceratose Actínica/etiologia , Ceratose Actínica/imunologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/imunologia
14.
Sci Signal ; 6(259): ra5, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23354688

RESUMO

In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits ß-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.


Assuntos
Caseína Quinase I/metabolismo , Dano ao DNA , Células-Tronco Embrionárias/enzimologia , Células-Tronco Pluripotentes/enzimologia , Biologia de Sistemas , Via de Sinalização Wnt , Animais , Apoptose/genética , Caseína Quinase I/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Camundongos , Células-Tronco Pluripotentes/citologia , Interferência de RNA , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Cell Biol ; 199(2): 235-49, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045548

RESUMO

The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Dano ao DNA , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Interferência de RNA , RNA Interferente Pequeno , Ubiquitinação , Raios Ultravioleta
16.
Mutat Res ; 735(1-2): 32-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564430

RESUMO

Calcineurin is a Ca(2+)-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-κB activity, although at lower concentrations, arsenite enhanced NF-κB activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.


Assuntos
Arsenitos/farmacocinética , Calcineurina/metabolismo , Calcineurina/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Células Jurkat , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Pele/metabolismo , Superóxidos/metabolismo , Fator de Transcrição RelA/metabolismo
17.
J Cell Biol ; 197(2): 267-81, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22492724

RESUMO

Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A-RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)-dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]-ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Raios Ultravioleta/efeitos adversos , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Desdobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno
18.
Radiat Res ; 177(5): 602-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22468706

RESUMO

The recent steep increase in population dose from radiation-based medical diagnostics, such as computed tomography (CT) scans, requires insight into human health risks, especially in terms of cancer development. Since the induction of genetic damage is considered a prominent cause underlying the carcinogenic potential of ionizing radiation, we quantified the induction of micronuclei and loss of heterozygosity events in human cells after exposure to clinically relevant low doses of X rays. A linear dose-response relationship for induction of micronuclei was observed in human fibroblasts with significantly increased frequencies at doses as low as 20 mGy. Strikingly, cells exposed during S-phase displayed the highest induction, whereas non S-phase cells showed no significant induction below 100 mGy. Similarly, the induction of loss of heterozygosity in human lymphoblastoid cells quantified at HLA loci, was linear with dose and reached significance at 50 mGy. Together the findings favor a linear-no-threshold model for genetic damage induced by acute exposure to ionizing radiation. We speculate that the higher radiosensitivity of S-phase cells might relate to the excessive cancer risk observed in highly proliferative tissues in radiation exposed organisms.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos/efeitos da radiação , Linfócitos/efeitos da radiação , Raios X/efeitos adversos , Divisão Celular/efeitos da radiação , Células Cultivadas/efeitos da radiação , Células Cultivadas/ultraestrutura , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Fibroblastos/ultraestrutura , Genes MHC Classe I/efeitos da radiação , Humanos , Perda de Heterozigosidade , Linfócitos/ultraestrutura , Testes para Micronúcleos , Tolerância a Radiação , Radiografia , Reprodutibilidade dos Testes , Fase S/efeitos da radiação
19.
Photochem Photobiol ; 88(1): 147-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22017241

RESUMO

Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.


Assuntos
Reparo do DNA , Fibroblastos/efeitos da radiação , Radiação Ionizante , Sequência de Bases , Primers do DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Mol Cell Biol ; 31(24): 4964-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006019

RESUMO

Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Dano ao DNA , Perfilação da Expressão Gênica/métodos , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteômica/métodos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA